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Abstract

To model and study local magnetic-field enhancements in a
solar flux rope we consider the magnetic field in its interior as a
superposition of two linear (constant α) force-free magnetic-field
distributions, viz. a global one, which is locally similar to a part of
the cylinder, and a local torus-shaped magnetic distribution. The
newly derived solution for a toroid with an aspect ratio close to
unity is applied. The symmetry axis of the toroid and that of the
cylinder may or may not coincide. Both the large and small radii
of the toroid are set equal to the cylinder’s radius. As a result,
there is a local decrease or increase of the flux tube diameter. In
principle, this approach can be used for the interpretation and
analysis of solar-limb observations of coronal loops.
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1 Introduction

As is clear from observations, waves and instabilities are regu-
larly generated in solar magnetic flux ropes or loops. The source
of the initial pulse can be impulsive magnetic reconnection at
one of the footpoints, which causes a local increase of the mag-
netic flux. Also, an initial instability can be triggered during
interactions between two isolated loops (Verwichte et al., 2005).
In terms of the geometrical size, we consider here the situation
when a tube with uniform thickness has a local increase of its
diameter at some point, say z = z0, here z is the distance along
the axis (central line) of the flux rope. Then, as the thicker part
moves along the tube, the footpoints serve as mirrors, reflecting
the motion, like solid surfaces do. The period of these swings
is of the order of T = 2L/V , with L the length of the loop and
V the speed of propagation. In the linear approximation, this
period does not depend on the thickness of the tube nor on the
thickness of the disturbed part. Such perturbations, known as
sausage modes, can be described by studying axi-symmetric total
pressure perturbations of an equilibrium. In the present paper,
however, we consider a static solar magnetic flux rope with a local
irregularity in its shape and we develop a mathematical tool to
describe and study such local enhancements. The idea to treat
local spatial disturbances in solar magnetic flux ropes, which have
a force-free structure in their interior, as a linear combination of a
few linear force-free solutions, was discussed already a long time
ago (Chandrasekhar and Kendall, 1957). More recently, Sakai
and De Jager (1997) modeled the process of interaction between
two flux ropes by means of a three-dimensional time-dependent
magnetohydrodynamic solver, and the initial magnetic field was a
superposition of two cylindrical force-free fields. A natural way to
describe such a magnetic structure is to impose a compact toroid
onto a pre-existing cylindrical configuration. However, the prob-
lem with this approach is that available toroidal solutions (Miller
and Turner, 1981; Ishibashi and Marubashi, 2004) cannot be used
if the aspect ratio (R0/r0) is close to unity. As a matter of fact, in
that case the formula of Miller and Turner (1981) does not sat-
isfy both constraints ∇ ·B = 0 (solenoidality) and B× (∇×B) = 0
(force-free condition). Also the Ishibashi and Marubashi (2004)
formulae do not satisfy the solenoidality condition in that limit.
Moreover, if one selects only the toroidal-type harmonics from
Chandrasekhar and Kendall (1957), they have singularities at the
center of symmetry of the toroid, and thus these cannot be used
either. An attempt to improve the Miller–Turner solution was
made by Romashets and Vandas (2003). This solution becomes
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divergence-free, but it is difficult to make it force-free at small
aspect ratios. Recently, Romashets and Vandas (2009) found a
toroidal force-free distribution, which is applicable for any value
of the aspect ratio and is finite everywhere; the solenoidal condi-
tion is fulfilled, because it is a linear force-free field. This solution
is used here to model disturbances in cylindrical flux ropes.

2 Linear Force-Free Magnetic Field in Toroidal Sym-

metry

Romashets and Vandas (2009) describe a procedure how to con-
struct a toroidal linear force-free distribution. Here we only men-
tion their basic concept and results that are important for the
derivations here. Consider a toroid with a small radius (r0) and a
large radius (R0) described in Cartesian coordinates (x, y, z) cen-
tered in the symmetry point (O) of the toroid and with the z-axis
along its symmetry axis (see Figure 1). Let us imagine a cylinder
with radius r0, whose axis is tangential to the circular axis of the
toroid at point T (Figure 1; |OT | = R0). The position of T is given
by the angle ψ. The magnetic field inside this cylinder is a linear
axially-symmetric force-free field: the so-called Lundquist (1950)
solution. In local cylindrical coordinates (r′, ϕ′, z′) with the origin
T and the z′-axis oriented along the cylinder’s axis (see Figure 1),
the components read

B′
r′ = 0, (1)

B′
ϕ′ = B0J1(αr

′), (2)

B′
z′ = B0J0(αr

′) (3)

where J0 and J1 are the Bessel functions. The solution satisfies
the force-free condition ∇ × B = αB with α = const.. The sign of
α determines chirality (handedness) and the absolute value of α
is related to the cylinder’s radius by r0 = 2.41/|α|, where 2.41 is
approximately the first root of J0. The absolute value of B0 is a
maximum field magnitude (located at the cylinder’s axis) and the
sign of B0 determines the field direction. In the global system, the
magnetic-field components can be expressed as functions of x, y, z,
and ψ (see Figure 1). The toroidal solution is constructed as a sum
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Figure 1: Illustration of how a toroidal field is constructed.
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of many of these cylindrical solutions in cylinders whose axes are
tangential to the toroid’s axis. More specifically, each cylindrical
contribution is considered as infinitesimal and proportional to dψ
and the resulting field is obtained as their integration over ψ (see
Romashets and Vandas, 2009, for details):

Bx = B0

∫

2π

0

[

J1(αρ)
z cosψ

ρ
− J0(αρ) sinψ

]

dψ, (4)

By = B0

∫

2π

0

[

J1(αρ)
z sinψ

ρ
+ J0(αρ) cosψ

]

dψ, (5)

Bz = −B0

∫

2π

0
J1(αρ)

x cosψ + y sinψ −R0

ρ
dψ, (6)

where ρ =
√

(x cosψ + y sinψ −R0)2 + z2. The formulae (4)–(6) are
evaluated numerically. Figures 2 and 3 show the magnetic struc-
ture obtained from these formulas. The magnetic-field lines lie in
surfaces given by rBϕ = const., where Bϕ is a magnetic-field compo-
nent of the field (4)–(6) in cylindrical coordinates, i.e., r =

√
x2 + y2

and ϕ = arctan(y/x). This can be demonstrated by the following
calculation. Due to the symmetry of (4)–(6) with respect to ro-
tation around the z-axis, all components do not depend on ϕ (the
field is axially symmetric). In addition, the magnetic field satisfies
the force-free condition ∇×B = αB. Therefore we can write

Br = − 1

αr

∂(rBϕ)

∂z
,

Bϕ =
1

α

(

∂Br

∂z
− ∂Bz

∂r

)

,

Bz =
1

αr

∂(rBϕ)

∂r
. (7)

According to our statement on magnetic-field lines, the following
expression should be zero:

B · ∇(rBϕ) = Br

∂(rBϕ)

∂r
+Bz

∂(rBϕ)

∂z
,

= − 1

αr

∂(rBϕ)

∂z

∂(rBϕ)

∂r
+

1

αr

∂(rBϕ)

∂r

∂(rBϕ)

∂z
= 0.

Figure 2 displays filled contours of the magnetic-field magnitude
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on the toroid’s cross section, i.e., a cut in the (x, z)-plane. Ac-
tually, in this figure only part of the cross section is shown, viz.
the part close to the central magnetic axis of the toroid (the axis
crosses the point x = R0 = 9, z = 0). In Figure 3, filled contours
of the same magnetic-field magnitude are displayed on the entire
cross section of the toroid (i.e. a cut in the (x, z)-plane), including
the center of the toroid and the surrounding parts. From this
picture it is clear that the magnetic field is symmetric around the
z-axis and regular everywhere.

3 Magnetic Field within Disturbed Flux Ropes

We now consider a cylindrical force-free tube with a constant
α magnetic field. The cylinder’s axis is oriented along the z-axis
of our global system (Figure 4). Its magnetic field is described
by the formulae (1)–(3) with B00 instead of B0 and coordinates r,
ϕ, and z, i.e. without primes. The considered tube has a radius
r0. To model magnetic disturbances inside this cylindrical flux
rope, we superpose on its field a magnetic field determined by a
compact toroid (i.e., with R0 = r0), using the solution given by
Equations (4)–(6) from the previous section with the same value
of α. Therefore, the resulting magnetic field is also force-free with
(the same) constant α. Figure 4 illustrates the situation where the
rotational symmetry axis of the toroid coincides with the cylinder
axis. However, this is not necessary in general. In the following
figures we illustrate the resulting modification of the flux tube
obtained by the insertion (superposition) of the compact-toroid
solution at some specified point in the cylindrical flux rope. On
Figure 5, the magnetic-field magnitude is shown on a longitudinal
cross section of a cylindrical tube of radius 3, as an example of
an application of the newly derived equations and solutions. The
magnetic-field strength in the cylinder has B00 = 20. The field is
modified by a superposed disturbance in the form of a small toroid
at the center of the coordinate system (0, 0, 0) and with small and
large radii both equal to 3, and the field strength of B0 = 2 is
small, because this additional field is regarded as a perturbation.
The symmetry axis of the superposed toroid coincides with the
symmetry axis of the flux tube. The geometric situation thus cor-
responds to the one illustrated in Figure 4. The magnetic-field
configuration is axially symmetric and the magnetic-field lines lie
in surfaces given by rBϕ = const. (see the previous section). Also
shown in the figure are cross sections of magnetic-flux surfaces
in the plane of the longitudinal cross section. On Figure 6, the
“boundary” of the disturbed cylindrical tube is shown for the
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case illustrated in Figures 4 – 5. This “boundary” is defined by
rBϕ = const. The superposed torus-shaped perturbation is clearly
visible as the thickening in the middle of the tube. Figure 7 dis-
plays a three-dimensional view on the magnetic-field lines inside
the disturbed tube, again for the same case as in Figures 4 – 6. A
result for a more complex case is illustrated in Figure 8. This is a
full three-dimensional perturbation of a cylindrical flux tube. In
this case, the symmetry axis of the inner toroid is inclined with
respect to the axis of the cylinder. The inclination angle between
the axis of symmetry of the toroid and the axis of the cylinder is
π/6 in this case. Several magnetic-field lines inside the disturbed
tube are shown. Because the magnetic-field configuration is not
axi-symmetric in this case, constant values of rBϕ cannot be used
anymore for tracing the magnetic-flux surfaces. Instead, two iso-
surfaces of the magnetic-field magnitude are shown in Figure 8.
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Figure 2: Contours of the magnetic-field magnitude on the toroid’s
cross section for the following choice of parameter values: R0 = 9,
r0 = 3, B0 = 20. The black lines correspond to projections of
magnetic-field lines (around the rotational axis z, the lines are
constructed as contours of rBϕ = const. and the magnetic-field
lines are helically twisted on these contours).
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Figure 3: The magnetic-field magnitude on the toroid (and on its
neighborhood) on a cut in the (x, z)-plane for the same choice
of parameters as in Figure 2. We here show a larger domain:
horizontal axis: −20 ≤ x ≤ 20, vertical axis: −20 ≤ z ≤ 20.
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Figure 4: Illustration of how a disturbed field is constructed.
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Figure 5:Magnetic-field magnitude distribution (i.e. contour lines of
|B|) on a longitudinal cross section of a cylindrical tube, disturbed
by an insertion of a compact torus at the center of the coordinate
system. The geometric situation corresponds to Figure 4, and
the parameters values for this particular case are R0 = 3, r0 = 3,
B00 = 20, B0 = 2, and sign(α) = 1. The black lines correspond
to cross sections of magnetic-flux surfaces (around the rotational
axis z; the lines are constructed as contours of rBϕ = const.).
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Figure 6: Outer boundary of the tube — given by rBϕ = const. for
the case illustrated in Figures 4 and 5.
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Figure 7: Magnetic field lines inside the flux tube for the case illus-
trated in Figures 4 – 6.
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Figure 8:Magnetic-field lines inside a disturbed tube. Here, the axis
of symmetry of the toroid is oriented at an angle π/6 with the axis
of the cylinder. Two plotted surfaces have constant magnetic-field
magnitude, with B = 11.5 and B = 18, respectively.
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